Proにアップグレード
サイトに移動
We've updated our
Privacy Policy
effective December 15. Please read our updated Privacy Policy and tap
Continue
解答
積分計算機
導関数計算機
代数計算機
行列計算機
もっと...
グラフ作成
折れ線グラフ
指数グラフ
二次グラフ
正弦グラフ
もっと...
計算機能
BMI計算機
複利計算機
パーセンテージ計算機
加速度計算機
もっと...
幾何学
ピタゴラス定理計算機
円面積計算機
二等辺三角形計算機
三角形計算機
もっと...
ツール
ノート
グループ
チートシート
ワークシート
学習ガイド
練習
ソリューションの検証
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
アップグレード
人気の高い問題
トピック
前代数
代数
文章問題
Functions & Graphing
幾何学
三角関数
前微積分
微分積分
統計
人気の高い三角関数問題
2sin^2(x)-cos^2(x)-4sin(x)+2=0
2
sin
2
(
x
)
−
cos
2
(
x
)
−
4
sin
(
x
)
+
2
=
0
6cos^2(x)-5sin(x)+5=0
6
cos
2
(
x
)
−
5
sin
(
x
)
+
5
=
0
1+cos^2(a)=3sin(x)cos(x)
1
+
cos
2
(
a
)
=
3
sin
(
x
)
cos
(
x
)
3cos(x)+sin(x)=cos(x)-2sin(x)
3
cos
(
x
)
+
sin
(
x
)
=
cos
(
x
)
−
2
sin
(
x
)
2cos(x)=cos^2(x)
2
cos
(
x
)
=
cos
2
(
x
)
tan^2(x)-sin(x)=tan^2(x)sin^2(x)
tan
2
(
x
)
−
sin
(
x
)
=
tan
2
(
x
)
sin
2
(
x
)
3cos(a)-1=0
3
cos
(
a
)
−
1
=
0
tan^2(x)+tan(x)+cot(x)+cot^2(x)=4
tan
2
(
x
)
+
tan
(
x
)
+
cot
(
x
)
+
cot
2
(
x
)
=
4
tan(a)=0
tan
(
a
)
=
0
cos^2(x)+3|cos(x)|-1=0
cos
2
(
x
)
+
3
|
cos
(
x
)
|
−
1
=
0
cos^5(x)=sin(75)
cos
5
(
x
)
=
sin
(
7
5
◦
)
csc^2(x)=sec(x)
csc
2
(
x
)
=
sec
(
x
)
(2cos(x)-sin^2(x))=1+cos^2(x)
(
2
cos
(
x
)
−
sin
2
(
x
)
)
=
1
+
cos
2
(
x
)
6cos^3(x)+cos^2(x)-1=0
6
cos
3
(
x
)
+
cos
2
(
x
)
−
1
=
0
4tan^2(x)+12tan(x)-27=0
4
tan
2
(
x
)
+
1
2
tan
(
x
)
−
2
7
=
0
sin^2(x)-cos(x)= 1/4
sin
2
(
x
)
−
cos
(
x
)
=
1
4
cos^4(a)=3+4cos^2(a)+cos^4(a)
cos
4
(
a
)
=
3
+
4
cos
2
(
a
)
+
cos
4
(
a
)
cos^4(t)=1
cos
4
(
t
)
=
1
8cos^2(x)-12sin(x)-12=0
8
cos
2
(
x
)
−
1
2
sin
(
x
)
−
1
2
=
0
1-cos(x)=2
1
−
cos
(
x
)
=
2
8sin^2(x)+6cos^2(x)=10
8
sin
2
(
x
)
+
6
cos
2
(
x
)
=
1
0
証明する sin^2(90-b)+cos^2(b-450)=1
prove
sin
2
(
9
0
◦
−
b
)
+
cos
2
(
b
−
4
5
0
◦
)
=
1
cos^2(2x)+sin^2(x)=1
cos
2
(
2
x
)
+
sin
2
(
x
)
=
1
cos^2(x)=(1-tan^2(x))/(sec^2(x))
cos
2
(
x
)
=
1
−
tan
2
(
x
)
sec
2
(
x
)
sin^2(x)-3cos(x)-4=0
sin
2
(
x
)
−
3
cos
(
x
)
−
4
=
0
tan^2(x)+sec(x)=5
tan
2
(
x
)
+
sec
(
x
)
=
5
4sin^5(x)=3
4
sin
5
(
x
)
=
3
cos(x/2)=0.5
cos
(
x
2
)
=
0
.
5
sin(x+60)=2cos(x)
sin
(
x
+
6
0
◦
)
=
2
cos
(
x
)
sin(9x)=sin(x)
sin
(
9
x
)
=
sin
(
x
)
cot^3(x)+2cot^2(x)-3cot(x)-6=0
cot
3
(
x
)
+
2
cot
2
(
x
)
−
3
cot
(
x
)
−
6
=
0
sin^2(x)=cos^3(x)
sin
2
(
x
)
=
cos
3
(
x
)
12cot^2(x)-cot(x)=1
1
2
cot
2
(
x
)
−
cot
(
x
)
=
1
2+cos(x)=3(cos^2(x))/2+(sin^2(x))/2
2
+
cos
(
x
)
=
3
cos
2
(
x
)
2
+
sin
2
(
x
)
2
sin^2(x)+sin^6(x)=3cos^2(2x)
sin
2
(
x
)
+
sin
6
(
x
)
=
3
cos
2
(
2
x
)
cot^2(x)-7cot(x)+10=0
cot
2
(
x
)
−
7
cot
(
x
)
+
1
0
=
0
solvefor x,r-2s+t=sin(2x+3y)
solvefor
x
,
r
−
2
s
+
t
=
sin
(
2
x
+
3
y
)
sin^5(a)=16sin^5(a)-20sin^3(a)+5sin(a)
sin
5
(
a
)
=
1
6
sin
5
(
a
)
−
2
0
sin
3
(
a
)
+
5
sin
(
a
)
tan(b)= 1/2
tan
(
b
)
=
1
2
cos^2(x)-cos(x)+1=sin^2(x)
cos
2
(
x
)
−
cos
(
x
)
+
1
=
sin
2
(
x
)
sin^{22}(x)=4sin^2(x)cos^2(x)
sin
2
2
(
x
)
=
4
sin
2
(
x
)
cos
2
(
x
)
sin(x)=(4.1)/(7.1)
sin
(
x
)
=
4
.
1
7
.
1
(1+cos^2(a))sin^2(a)=1
(
1
+
cos
2
(
a
)
)
sin
2
(
a
)
=
1
cos^4(x)=cos^{23}(x)
cos
4
(
x
)
=
cos
2
3
(
x
)
cos^4(x)+2cos^2(x)=1
cos
4
(
x
)
+
2
cos
2
(
x
)
=
1
cos^2(x)+sin^2(x)=cos^5(x)
cos
2
(
x
)
+
sin
2
(
x
)
=
cos
5
(
x
)
sin(x-45^5)=((sqrt(2)))/2
sin
(
x
−
4
5
5
)
=
(
√
2
)
2
(sin(x)-sqrt(3)*cos(x))/2 =0
sin
(
x
)
−
√
3
·
cos
(
x
)
2
=
0
cos(1/(3x))= 1/3
cos
(
1
3
x
)
=
1
3
arctan(1+x)+arctan(1-x)=arctan(1/2)
arctan
(
1
+
x
)
+
arctan
(
1
−
x
)
=
arctan
(
1
2
)
-4cos^2(x)=0
−
4
cos
2
(
x
)
=
0
sin^2(x)-4sin^2(x)+7cos^2(x)=0
sin
2
(
x
)
−
4
sin
2
(
x
)
+
7
cos
2
(
x
)
=
0
(sin(x))(cos(x))=0
(
sin
(
x
)
)
(
cos
(
x
)
)
=
0
sin^2(x)-15sin(x)cos(x)+50cos^2(x)=0
sin
2
(
x
)
−
1
5
sin
(
x
)
cos
(
x
)
+
5
0
cos
2
(
x
)
=
0
cot(x)=sin^2(x)
cot
(
x
)
=
sin
2
(
x
)
sec(2x+60)=-1.5
sec
(
2
x
+
6
0
)
=
−
1
.
5
sin^2(x)+2sin^2(x/2)=1
sin
2
(
x
)
+
2
sin
2
(
x
2
)
=
1
tan(a)=0.7
tan
(
a
)
=
0
.
7
8sin(x)-4csc(x)=0
8
sin
(
x
)
−
4
csc
(
x
)
=
0
6cos^2(x)+5sin(x)-2=0
6
cos
2
(
x
)
+
5
sin
(
x
)
−
2
=
0
(tan^2(b)+1)/(tan(b))=csc^2(b)
tan
2
(
b
)
+
1
tan
(
b
)
=
csc
2
(
b
)
solvefor x,r+s+6t=cos(2x+y)
solvefor
x
,
r
+
s
+
6
t
=
cos
(
2
x
+
y
)
(tan^2(b)+1)/((tan(x)))=csc^2(b)
tan
2
(
b
)
+
1
(
tan
(
x
)
)
=
csc
2
(
b
)
sin(x)+sin^2(x/2)= 1/2
sin
(
x
)
+
sin
2
(
x
2
)
=
1
2
sin^5(x)+sin^3(x)=0
sin
5
(
x
)
+
sin
3
(
x
)
=
0
5sin^2(x)cos(7x)-cos(7x)=0
5
sin
2
(
x
)
cos
(
7
x
)
−
cos
(
7
x
)
=
0
solvefor x,cos^2(x)*z^2-2cos^2(x)*z+1=0
solvefor
x
,
cos
2
(
x
)
·
z
2
−
2
cos
2
(
x
)
·
z
+
1
=
0
sin(a)+sin(120+a)+sin(120-a)=0
sin
(
a
)
+
sin
(
1
2
0
◦
+
a
)
+
sin
(
1
2
0
◦
−
a
)
=
0
3sin(x)sin(x)=5cos(x)-2
3
sin
(
x
)
sin
(
x
)
=
5
cos
(
x
)
−
2
(cos(x)+3cos(x))/(2+2)=0
cos
(
x
)
+
3
cos
(
x
)
2
+
2
=
0
3tan^3(x)-tan^2(x)-tan(x)-1=0
3
tan
3
(
x
)
−
tan
2
(
x
)
−
tan
(
x
)
−
1
=
0
cos(2x+60)=cos(x)
cos
(
2
x
+
6
0
)
=
cos
(
x
)
3tan(x)-3cot(x)-1=0
3
tan
(
x
)
−
3
cot
(
x
)
−
1
=
0
5sin^2(x)+6cos(x)-6=0
5
sin
2
(
x
)
+
6
cos
(
x
)
−
6
=
0
sin^2(x)-sin(x)cos(x)-6cos^2(x)=0
sin
2
(
x
)
−
sin
(
x
)
cos
(
x
)
−
6
cos
2
(
x
)
=
0
5cos^2(x)+3sin(x)-3=0
5
cos
2
(
x
)
+
3
sin
(
x
)
−
3
=
0
(cos^2(x)+1)/(1+cot^2(x))=1
cos
2
(
x
)
+
1
1
+
cot
2
(
x
)
=
1
3sin^2(c)-7sin(x)+2=0
3
sin
2
(
c
)
−
7
sin
(
x
)
+
2
=
0
1+cos^2(x)=sin^4(x)
1
+
cos
2
(
x
)
=
sin
4
(
x
)
cos(t)=cos(2t)
cos
(
t
)
=
cos
(
2
t
)
arctan(x+2)=arcsin(7/25)+arccos(4/5)
arctan
(
x
+
2
)
=
arcsin
(
7
2
5
)
+
arccos
(
4
5
)
sec(a)= 38/13
sec
(
a
)
=
3
8
1
3
tan(c)=0.6538
tan
(
c
)
=
0
.
6
5
3
8
(sec^2(a))cos^2(a)=sin^2(a)
(
sec
2
(
a
)
)
cos
2
(
a
)
=
sin
2
(
a
)
-2sin(x)+5sin^2(x)=0
−
2
sin
(
x
)
+
5
sin
2
(
x
)
=
0
sqrt(3)*tan^2(x)-1=0
√
3
·
tan
2
(
x
)
−
1
=
0
cos^4(x)=(sin^2(x)-1)/4
cos
4
(
x
)
=
sin
2
(
x
)
−
1
4
sqrt(2)*sin(x)+1=0
√
2
·
sin
(
x
)
+
1
=
0
5cos^2(2x)+4cos^2(x)-5=0
5
cos
2
(
2
x
)
+
4
cos
2
(
x
)
−
5
=
0
sin(3x+10)=cos(x+24)
sin
(
3
x
+
1
0
)
=
cos
(
x
+
2
4
◦
)
tan(x^2)+1=0
tan
(
x
2
)
+
1
=
0
((1+cos^2(a)))/(sin^2(a))= 5/3
(
1
+
cos
2
(
a
)
)
sin
2
(
a
)
=
5
3
d^2+13d+36=(sin^2(x))/2
d
2
+
1
3
d
+
3
6
=
sin
2
(
x
)
2
(tan^2(x)-4)/(cos(x)+5)=0
tan
2
(
x
)
−
4
cos
(
x
)
+
5
=
0
cot^2(x)=sec^2(x)-1
cot
2
(
x
)
=
sec
2
(
x
)
−
1
(cos^2(a)-1)/(sin^2(a)+1)=0
cos
2
(
a
)
−
1
sin
2
(
a
)
+
1
=
0
7sin^2(x)+2sin^2(x)-3cos^2(x)=0
7
sin
2
(
x
)
+
2
sin
2
(
x
)
−
3
cos
2
(
x
)
=
0
sin^2(x)-cos^2(x)=cos^4(x)
sin
2
(
x
)
−
cos
2
(
x
)
=
cos
4
(
x
)
sin^2(x)+2cos^2(x)=1
sin
2
(
x
)
+
2
cos
2
(
x
)
=
1
(sin^2(a)+1)/(tan^2(a))=1
sin
2
(
a
)
+
1
tan
2
(
a
)
=
1
1
..
337
338
339
340
341
..
345