解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

sin(2a+10)=cos(3a-20)

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

sin(2a+10)=cos(3a−20)

解

a=104πn+20+π​,a=−2π+4πn−60​
+1
度
a=132.59155…∘+72∘n,a=1628.87338…∘−360∘n
解答ステップ
sin(2a+10)=cos(3a−20)
三角関数の公式を使用して書き換える
sin(2a+10)=cos(3a−20)
次の恒等を使用する: cos(x)=sin(2π​−x)sin(2a+10)=sin(2π​−(3a−20))
sin(2a+10)=sin(2π​−(3a−20))
三角関数の逆数プロパティを適用する
sin(2a+10)=sin(2π​−(3a−20))
sin(x)=sin(y)⇒x=y+2πn,x=π−y+2πn2a+10=2π​−(3a−20)+2πn,2a+10=π−(2π​−(3a−20))+2πn
2a+10=2π​−(3a−20)+2πn,2a+10=π−(2π​−(3a−20))+2πn
2a+10=2π​−(3a−20)+2πn:a=104πn+20+π​
2a+10=2π​−(3a−20)+2πn
拡張 2π​−(3a−20)+2πn:2π​−3a+20+2πn
2π​−(3a−20)+2πn
−(3a−20):−3a+20
−(3a−20)
括弧を分配する=−(3a)−(−20)
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−3a+20
=2π​−3a+20+2πn
2a+10=2π​−3a+20+2πn
10を右側に移動します
2a+10=2π​−3a+20+2πn
両辺から10を引く2a+10−10=2π​−3a+20+2πn−10
簡素化
2a+10−10=2π​−3a+20+2πn−10
簡素化 2a+10−10:2a
2a+10−10
類似した元を足す:10−10=0
=2a
簡素化 2π​−3a+20+2πn−10:−3a+2πn+10+2π​
2π​−3a+20+2πn−10
条件のようなグループ=−3a+2πn+2π​+20−10
数を足す/引く:20−10=10=−3a+2πn+10+2π​
2a=−3a+2πn+10+2π​
2a=−3a+2πn+10+2π​
2a=−3a+2πn+10+2π​
3aを左側に移動します
2a=−3a+2πn+10+2π​
両辺に3aを足す2a+3a=−3a+2πn+10+2π​+3a
簡素化5a=2πn+10+2π​
5a=2πn+10+2π​
以下で両辺を割る5
5a=2πn+10+2π​
以下で両辺を割る555a​=52πn​+510​+52π​​
簡素化
55a​=52πn​+510​+52π​​
簡素化 55a​:a
55a​
数を割る:55​=1=a
簡素化 52πn​+510​+52π​​:104πn+20+π​
52πn​+510​+52π​​
規則を適用 ca​±cb​=ca±b​=52πn+10+2π​​
結合 2πn+10+2π​:24πn+20+π​
2πn+10+2π​
元を分数に変換する: 2πn=22πn2​,10=210⋅2​=22πn⋅2​+210⋅2​+2π​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=22πn⋅2+10⋅2+π​
2πn⋅2+10⋅2+π=4πn+20+π
2πn⋅2+10⋅2+π
数を乗じる:2⋅2=4=4πn+10⋅2+π
数を乗じる:10⋅2=20=4πn+20+π
=24πn+20+π​
=524πn+20+π​​
分数の規則を適用する: acb​​=c⋅ab​=2⋅54πn+20+π​
数を乗じる:2⋅5=10=104πn+20+π​
a=104πn+20+π​
a=104πn+20+π​
a=104πn+20+π​
2a+10=π−(2π​−(3a−20))+2πn:a=−2π+4πn−60​
2a+10=π−(2π​−(3a−20))+2πn
拡張 π−(2π​−(3a−20))+2πn:π−2π​+3a−20+2πn
π−(2π​−(3a−20))+2πn
−(3a−20):−3a+20
−(3a−20)
括弧を分配する=−(3a)−(−20)
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−3a+20
=π−(−3a+20+2π​)+2πn
−(2π​−3a+20):−2π​+3a−20
−(2π​−3a+20)
括弧を分配する=−(2π​)−(−3a)−(20)
マイナス・プラスの規則を適用する−(−a)=a,−(a)=−a=−2π​+3a−20
=π−2π​+3a−20+2πn
2a+10=π−2π​+3a−20+2πn
10を右側に移動します
2a+10=π−2π​+3a−20+2πn
両辺から10を引く2a+10−10=π−2π​+3a−20+2πn−10
簡素化
2a+10−10=π−2π​+3a−20+2πn−10
簡素化 2a+10−10:2a
2a+10−10
類似した元を足す:10−10=0
=2a
簡素化 π−2π​+3a−20+2πn−10:3a+2πn+π−30−2π​
π−2π​+3a−20+2πn−10
条件のようなグループ=3a+π+2πn−2π​−20−10
数を引く:−20−10=−30=3a+2πn+π−30−2π​
2a=3a+2πn+π−30−2π​
2a=3a+2πn+π−30−2π​
2a=3a+2πn+π−30−2π​
3aを左側に移動します
2a=3a+2πn+π−30−2π​
両辺から3aを引く2a−3a=3a+2πn+π−30−2π​−3a
簡素化−a=2πn+π−30−2π​
−a=2πn+π−30−2π​
以下で両辺を割る−1
−a=2πn+π−30−2π​
以下で両辺を割る−1−1−a​=−12πn​+−1π​−−130​−−12π​​
簡素化
−1−a​=−12πn​+−1π​−−130​−−12π​​
簡素化 −1−a​:a
−1−a​
分数の規則を適用する: −b−a​=ba​=1a​
規則を適用 1a​=a=a
簡素化 −12πn​+−1π​−−130​−−12π​​:−2π+4πn−60​
−12πn​+−1π​−−130​−−12π​​
規則を適用 ca​±cb​=ca±b​=−12πn+π−30−2π​​
分数の規則を適用する: −ba​=−ba​=−12πn+π−30−2π​​
結合 2πn+π−30−2π​:2π+4πn−60​
2πn+π−30−2π​
元を分数に変換する: 2πn=22πn2​,π=2π2​,30=230⋅2​=22πn⋅2​+2π2​−230⋅2​−2π​
分母が等しいので, 分数を組み合わせる: ca​±cb​=ca±b​=22πn⋅2+π2−30⋅2−π​
2πn⋅2+π2−30⋅2−π=π+4πn−60
2πn⋅2+π2−30⋅2−π
条件のようなグループ=2π−π+2⋅2πn−30⋅2
類似した元を足す:2π−π=π=π+2⋅2πn−30⋅2
数を乗じる:2⋅2=4=π+4πn−30⋅2
数を乗じる:30⋅2=60=π+4πn−60
=2π+4πn−60​
=−12π+4πn−60​​
分数の規則を適用する: 1a​=a=−2π+4πn−60​
a=−2π+4πn−60​
a=−2π+4πn−60​
a=−2π+4πn−60​
a=104πn+20+π​,a=−2π+4πn−60​
a=104πn+20+π​,a=−2π+4πn−60​

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

b= 3/((cot(x)))4sin^2(x)+cos(x)+1=0(cot^2(x))-csc(x)=1solvefor x,u=arctan(x/y)4cos^2(2x-1)=1
勉強ツールAI Math Solverワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能Symbolab Math Solver API
会社Symbolabについてブログヘルプ
法務プライバシーご利用規約Cookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024