解
4sin(x)−sin3(x)−1=0
解
x=0.25691…+2πn,x=π−0.25691…+2πn
+1
度
x=14.72036…∘+360∘n,x=165.27963…∘+360∘n解答ステップ
4sin(x)−sin3(x)−1=0
置換で解く
4sin(x)−sin3(x)−1=0
仮定:sin(x)=u4u−u3−1=0
4u−u3−1=0:u≈0.25410…,u≈1.86080…,u≈−2.11490…
4u−u3−1=0
標準的な形式で書く anxn+…+a1x+a0=0−u3+4u−1=0
ニュートン・ラプソン法を使用して −u3+4u−1=0 の解を1つ求める:u≈0.25410…
−u3+4u−1=0
ニュートン・ラプソン概算の定義
f(u)=−u3+4u−1
発見する f′(u):−3u2+4
dud(−u3+4u−1)
和/差の法則を適用: (f±g)′=f′±g′=−dud(u3)+dud(4u)−dud(1)
dud(u3)=3u2
dud(u3)
乗の法則を適用: dxd(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dud(4u)=4
dud(4u)
定数を除去: (a⋅f)′=a⋅f′=4dudu
共通の導関数を適用: dudu=1=4⋅1
簡素化=4
dud(1)=0
dud(1)
定数の導関数: dxd(a)=0=0
=−3u2+4−0
簡素化=−3u2+4
仮定: u0=0Δun+1<になるまで un+1を計算する 0.000001
u1=0.25:Δu1=0.25
f(u0)=−03+4⋅0−1=−1f′(u0)=−3⋅02+4=4u1=0.25
Δu1=∣0.25−0∣=0.25Δu1=0.25
u2=0.25409…:Δu2=0.00409…
f(u1)=−0.253+4⋅0.25−1=−0.015625f′(u1)=−3⋅0.252+4=3.8125u2=0.25409…
Δu2=∣0.25409…−0.25∣=0.00409…Δu2=0.00409…
u3=0.25410…:Δu3=3.32771E−6
f(u2)=−0.25409…3+4⋅0.25409…−1=−0.00001…f′(u2)=−3⋅0.25409…2+4=3.80630…u3=0.25410…
Δu3=∣0.25410…−0.25409…∣=3.32771E−6Δu3=3.32771E−6
u4=0.25410…:Δu4=2.21776E−12
f(u3)=−0.25410…3+4⋅0.25410…−1=−8.44147E−12f′(u3)=−3⋅0.25410…2+4=3.80629…u4=0.25410…
Δu4=∣0.25410…−0.25410…∣=2.21776E−12Δu4=2.21776E−12
u≈0.25410…
長除法を適用する:u−0.25410…−u3+4u−1=−u2−0.25410…u+3.93543…
−u2−0.25410…u+3.93543…≈0
ニュートン・ラプソン法を使用して −u2−0.25410…u+3.93543…=0 の解を1つ求める:u≈1.86080…
−u2−0.25410…u+3.93543…=0
ニュートン・ラプソン概算の定義
f(u)=−u2−0.25410…u+3.93543…
発見する f′(u):−2u−0.25410…
dud(−u2−0.25410…u+3.93543…)
和/差の法則を適用: (f±g)′=f′±g′=−dud(u2)−dud(0.25410…u)+dud(3.93543…)
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dud(0.25410…u)=0.25410…
dud(0.25410…u)
定数を除去: (a⋅f)′=a⋅f′=0.25410…dudu
共通の導関数を適用: dudu=1=0.25410…⋅1
簡素化=0.25410…
dud(3.93543…)=0
dud(3.93543…)
定数の導関数: dxd(a)=0=0
=−2u−0.25410…+0
簡素化=−2u−0.25410…
仮定: u0=5Δun+1<になるまで un+1を計算する 0.000001
u1=2.82183…:Δu1=2.17816…
f(u0)=−52−0.25410…⋅5+3.93543…=−22.33507…f′(u0)=−2⋅5−0.25410…=−10.25410…u1=2.82183…
Δu1=∣2.82183…−5∣=2.17816…Δu1=2.17816…
u2=2.01740…:Δu2=0.80443…
f(u1)=−2.82183…2−0.25410…⋅2.82183…+3.93543…=−4.74438…f′(u1)=−2⋅2.82183…−0.25410…=−5.89778…u2=2.01740…
Δu2=∣2.01740…−2.82183…∣=0.80443…Δu2=0.80443…
u3=1.86652…:Δu3=0.15088…
f(u2)=−2.01740…2−0.25410…⋅2.01740…+3.93543…=−0.64711…f′(u2)=−2⋅2.01740…−0.25410…=−4.28891…u3=1.86652…
Δu3=∣1.86652…−2.01740…∣=0.15088…Δu3=0.15088…
u4=1.86081…:Δu4=0.00570…
f(u3)=−1.86652…2−0.25410…⋅1.86652…+3.93543…=−0.02276…f′(u3)=−2⋅1.86652…−0.25410…=−3.98714…u4=1.86081…
Δu4=∣1.86081…−1.86652…∣=0.00570…Δu4=0.00570…
u5=1.86080…:Δu5=8.1997E−6
f(u4)=−1.86081…2−0.25410…⋅1.86081…+3.93543…=−0.00003…f′(u4)=−2⋅1.86081…−0.25410…=−3.97572…u5=1.86080…
Δu5=∣1.86080…−1.86081…∣=8.1997E−6Δu5=8.1997E−6
u6=1.86080…:Δu6=1.69115E−11
f(u5)=−1.86080…2−0.25410…⋅1.86080…+3.93543…=−6.72351E−11f′(u5)=−2⋅1.86080…−0.25410…=−3.97571…u6=1.86080…
Δu6=∣1.86080…−1.86080…∣=1.69115E−11Δu6=1.69115E−11
u≈1.86080…
長除法を適用する:u−1.86080…−u2−0.25410…u+3.93543…=−u−2.11490…
−u−2.11490…≈0
u≈−2.11490…
解答はu≈0.25410…,u≈1.86080…,u≈−2.11490…
代用を戻す u=sin(x)sin(x)≈0.25410…,sin(x)≈1.86080…,sin(x)≈−2.11490…
sin(x)≈0.25410…,sin(x)≈1.86080…,sin(x)≈−2.11490…
sin(x)=0.25410…:x=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
sin(x)=0.25410…
三角関数の逆数プロパティを適用する
sin(x)=0.25410…
以下の一般解 sin(x)=0.25410…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
x=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
sin(x)=1.86080…:解なし
sin(x)=1.86080…
−1≤sin(x)≤1解なし
sin(x)=−2.11490…:解なし
sin(x)=−2.11490…
−1≤sin(x)≤1解なし
すべての解を組み合わせるx=arcsin(0.25410…)+2πn,x=π−arcsin(0.25410…)+2πn
10進法形式で解を証明するx=0.25691…+2πn,x=π−0.25691…+2πn