解
tan2(x)sec(x)−1=0
解
x=0.71532…+2πn,x=2π−0.71532…+2πn
+1
度
x=40.98531…∘+360∘n,x=319.01468…∘+360∘n解答ステップ
tan2(x)sec(x)−1=0
三角関数の公式を使用して書き換える
−1+sec(x)tan2(x)
ピタゴラスの公式を使用する: tan2(x)+1=sec2(x)tan2(x)=sec2(x)−1=−1+sec(x)(sec2(x)−1)
−1+(−1+sec2(x))sec(x)=0
置換で解く
−1+(−1+sec2(x))sec(x)=0
仮定:sec(x)=u−1+(−1+u2)u=0
−1+(−1+u2)u=0:u≈1.32471…
−1+(−1+u2)u=0
拡張 −1+(−1+u2)u:−1−u+u3
−1+(−1+u2)u
=−1+u(−1+u2)
拡張 u(−1+u2):−u+u3
u(−1+u2)
分配法則を適用する: a(b+c)=ab+aca=u,b=−1,c=u2=u(−1)+uu2
マイナス・プラスの規則を適用する+(−a)=−a=−1⋅u+u2u
簡素化 −1⋅u+u2u:−u+u3
−1⋅u+u2u
1⋅u=u
1⋅u
乗算:1⋅u=u=u
u2u=u3
u2u
指数の規則を適用する: ab⋅ac=ab+cu2u=u2+1=u2+1
数を足す:2+1=3=u3
=−u+u3
=−u+u3
=−1−u+u3
−1−u+u3=0
標準的な形式で書く anxn+…+a1x+a0=0u3−u−1=0
ニュートン・ラプソン法を使用して u3−u−1=0 の解を1つ求める:u≈1.32471…
u3−u−1=0
ニュートン・ラプソン概算の定義
f(u)=u3−u−1
発見する f′(u):3u2−1
dud(u3−u−1)
和/差の法則を適用: (f±g)′=f′±g′=dud(u3)−dudu−dud(1)
dud(u3)=3u2
dud(u3)
乗の法則を適用: dxd(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dudu=1
dudu
共通の導関数を適用: dudu=1=1
dud(1)=0
dud(1)
定数の導関数: dxd(a)=0=0
=3u2−1−0
簡素化=3u2−1
仮定: u0=1Δun+1<になるまで un+1を計算する 0.000001
u1=1.5:Δu1=0.5
f(u0)=13−1−1=−1f′(u0)=3⋅12−1=2u1=1.5
Δu1=∣1.5−1∣=0.5Δu1=0.5
u2=1.34782…:Δu2=0.15217…
f(u1)=1.53−1.5−1=0.875f′(u1)=3⋅1.52−1=5.75u2=1.34782…
Δu2=∣1.34782…−1.5∣=0.15217…Δu2=0.15217…
u3=1.32520…:Δu3=0.02262…
f(u2)=1.34782…3−1.34782…−1=0.10068…f′(u2)=3⋅1.34782…2−1=4.44990…u3=1.32520…
Δu3=∣1.32520…−1.34782…∣=0.02262…Δu3=0.02262…
u4=1.32471…:Δu4=0.00048…
f(u3)=1.32520…3−1.32520…−1=0.00205…f′(u3)=3⋅1.32520…2−1=4.26846…u4=1.32471…
Δu4=∣1.32471…−1.32520…∣=0.00048…Δu4=0.00048…
u5=1.32471…:Δu5=2.16754E−7
f(u4)=1.32471…3−1.32471…−1=9.24378E−7f′(u4)=3⋅1.32471…2−1=4.26463…u5=1.32471…
Δu5=∣1.32471…−1.32471…∣=2.16754E−7Δu5=2.16754E−7
u≈1.32471…
長除法を適用する:u−1.32471…u3−u−1=u2+1.32471…u+0.75487…
u2+1.32471…u+0.75487…≈0
ニュートン・ラプソン法を使用して u2+1.32471…u+0.75487…=0 の解を1つ求める:以下の解はない: u∈R
u2+1.32471…u+0.75487…=0
ニュートン・ラプソン概算の定義
f(u)=u2+1.32471…u+0.75487…
発見する f′(u):2u+1.32471…
dud(u2+1.32471…u+0.75487…)
和/差の法則を適用: (f±g)′=f′±g′=dud(u2)+dud(1.32471…u)+dud(0.75487…)
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dud(1.32471…u)=1.32471…
dud(1.32471…u)
定数を除去: (a⋅f)′=a⋅f′=1.32471…dudu
共通の導関数を適用: dudu=1=1.32471…⋅1
簡素化=1.32471…
dud(0.75487…)=0
dud(0.75487…)
定数の導関数: dxd(a)=0=0
=2u+1.32471…+0
簡素化=2u+1.32471…
仮定: u0=−1Δun+1<になるまで un+1を計算する 0.000001
u1=−0.36299…:Δu1=0.63700…
f(u0)=(−1)2+1.32471…(−1)+0.75487…=0.43015…f′(u0)=2(−1)+1.32471…=−0.67528…u1=−0.36299…
Δu1=∣−0.36299…−(−1)∣=0.63700…Δu1=0.63700…
u2=−1.04072…:Δu2=0.67772…
f(u1)=(−0.36299…)2+1.32471…(−0.36299…)+0.75487…=0.40577…f′(u1)=2(−0.36299…)+1.32471…=0.59873…u2=−1.04072…
Δu2=∣−1.04072…−(−0.36299…)∣=0.67772…Δu2=0.67772…
u3=−0.43374…:Δu3=0.60697…
f(u2)=(−1.04072…)2+1.32471…(−1.04072…)+0.75487…=0.45931…f′(u2)=2(−1.04072…)+1.32471…=−0.75672…u3=−0.43374…
Δu3=∣−0.43374…−(−1.04072…)∣=0.60697…Δu3=0.60697…
u4=−1.23950…:Δu4=0.80576…
f(u3)=(−0.43374…)2+1.32471…(−0.43374…)+0.75487…=0.36842…f′(u3)=2(−0.43374…)+1.32471…=0.45723…u4=−1.23950…
Δu4=∣−1.23950…−(−0.43374…)∣=0.80576…Δu4=0.80576…
u5=−0.67703…:Δu5=0.56247…
f(u4)=(−1.23950…)2+1.32471…(−1.23950…)+0.75487…=0.64925…f′(u4)=2(−1.23950…)+1.32471…=−1.15429…u5=−0.67703…
Δu5=∣−0.67703…−(−1.23950…)∣=0.56247…Δu5=0.56247…
u6=10.09982…:Δu6=10.77686…
f(u5)=(−0.67703…)2+1.32471…(−0.67703…)+0.75487…=0.31637…f′(u5)=2(−0.67703…)+1.32471…=−0.02935…u6=10.09982…
Δu6=∣10.09982…−(−0.67703…)∣=10.77686…Δu6=10.77686…
u7=4.70404…:Δu7=5.39578…
f(u6)=10.09982…2+1.32471…⋅10.09982…+0.75487…=116.14080…f′(u6)=2⋅10.09982…+1.32471…=21.52437…u7=4.70404…
Δu7=∣4.70404…−10.09982…∣=5.39578…Δu7=5.39578…
u8=1.99138…:Δu8=2.71265…
f(u7)=4.70404…2+1.32471…⋅4.70404…+0.75487…=29.11445…f′(u7)=2⋅4.70404…+1.32471…=10.73280…u8=1.99138…
Δu8=∣1.99138…−4.70404…∣=2.71265…Δu8=2.71265…
u9=0.60494…:Δu9=1.38644…
f(u8)=1.99138…2+1.32471…⋅1.99138…+0.75487…=7.35852…f′(u8)=2⋅1.99138…+1.32471…=5.30749…u9=0.60494…
Δu9=∣0.60494…−1.99138…∣=1.38644…Δu9=1.38644…
u10=−0.15344…:Δu10=0.75838…
f(u9)=0.60494…2+1.32471…⋅0.60494…+0.75487…=1.92221…f′(u9)=2⋅0.60494…+1.32471…=2.53460…u10=−0.15344…
Δu10=∣−0.15344…−0.60494…∣=0.75838…Δu10=0.75838…
u11=−0.71852…:Δu11=0.56507…
f(u10)=(−0.15344…)2+1.32471…(−0.15344…)+0.75487…=0.57515…f′(u10)=2(−0.15344…)+1.32471…=1.01783…u11=−0.71852…
Δu11=∣−0.71852…−(−0.15344…)∣=0.56507…Δu11=0.56507…
u12=2.12427…:Δu12=2.84279…
f(u11)=(−0.71852…)2+1.32471…(−0.71852…)+0.75487…=0.31931…f′(u11)=2(−0.71852…)+1.32471…=−0.11232…u12=2.12427…
Δu12=∣2.12427…−(−0.71852…)∣=2.84279…Δu12=2.84279…
解を見つけられない
解はu≈1.32471…
代用を戻す u=sec(x)sec(x)≈1.32471…
sec(x)≈1.32471…
sec(x)=1.32471…:x=arcsec(1.32471…)+2πn,x=2π−arcsec(1.32471…)+2πn
sec(x)=1.32471…
三角関数の逆数プロパティを適用する
sec(x)=1.32471…
以下の一般解 sec(x)=1.32471…sec(x)=a⇒x=arcsec(a)+2πn,x=2π−arcsec(a)+2πnx=arcsec(1.32471…)+2πn,x=2π−arcsec(1.32471…)+2πn
x=arcsec(1.32471…)+2πn,x=2π−arcsec(1.32471…)+2πn
すべての解を組み合わせるx=arcsec(1.32471…)+2πn,x=2π−arcsec(1.32471…)+2πn
10進法形式で解を証明するx=0.71532…+2πn,x=2π−0.71532…+2πn