解
sin(x)+sin2(x)+sin3(x)=1
解
x=0.57482…+2πn,x=π−0.57482…+2πn
+1
度
x=32.93512…∘+360∘n,x=147.06487…∘+360∘n解答ステップ
sin(x)+sin2(x)+sin3(x)=1
置換で解く
sin(x)+sin2(x)+sin3(x)=1
仮定:sin(x)=uu+u2+u3=1
u+u2+u3=1:u≈0.54368…
u+u2+u3=1
1を左側に移動します
u+u2+u3=1
両辺から1を引くu+u2+u3−1=1−1
簡素化u+u2+u3−1=0
u+u2+u3−1=0
標準的な形式で書く anxn+…+a1x+a0=0u3+u2+u−1=0
ニュートン・ラプソン法を使用して u3+u2+u−1=0 の解を1つ求める:u≈0.54368…
u3+u2+u−1=0
ニュートン・ラプソン概算の定義
f(u)=u3+u2+u−1
発見する f′(u):3u2+2u+1
dud(u3+u2+u−1)
和/差の法則を適用: (f±g)′=f′±g′=dud(u3)+dud(u2)+dudu−dud(1)
dud(u3)=3u2
dud(u3)
乗の法則を適用: dxd(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dudu=1
dudu
共通の導関数を適用: dudu=1=1
dud(1)=0
dud(1)
定数の導関数: dxd(a)=0=0
=3u2+2u+1−0
簡素化=3u2+2u+1
仮定: u0=1Δun+1<になるまで un+1を計算する 0.000001
u1=0.66666…:Δu1=0.33333…
f(u0)=13+12+1−1=2f′(u0)=3⋅12+2⋅1+1=6u1=0.66666…
Δu1=∣0.66666…−1∣=0.33333…Δu1=0.33333…
u2=0.55555…:Δu2=0.11111…
f(u1)=0.66666…3+0.66666…2+0.66666…−1=0.40740…f′(u1)=3⋅0.66666…2+2⋅0.66666…+1=3.66666…u2=0.55555…
Δu2=∣0.55555…−0.66666…∣=0.11111…Δu2=0.11111…
u3=0.54381…:Δu3=0.01174…
f(u2)=0.55555…3+0.55555…2+0.55555…−1=0.03566…f′(u2)=3⋅0.55555…2+2⋅0.55555…+1=3.03703…u3=0.54381…
Δu3=∣0.54381…−0.55555…∣=0.01174…Δu3=0.01174…
u4=0.54368…:Δu4=0.00012…
f(u3)=0.54381…3+0.54381…2+0.54381…−1=0.00036…f′(u3)=3⋅0.54381…2+2⋅0.54381…+1=2.97481…u4=0.54368…
Δu4=∣0.54368…−0.54381…∣=0.00012…Δu4=0.00012…
u5=0.54368…:Δu5=1.34021E−8
f(u4)=0.54368…3+0.54368…2+0.54368…−1=3.98601E−8f′(u4)=3⋅0.54368…2+2⋅0.54368…+1=2.97417…u5=0.54368…
Δu5=∣0.54368…−0.54368…∣=1.34021E−8Δu5=1.34021E−8
u≈0.54368…
長除法を適用する:u−0.54368…u3+u2+u−1=u2+1.54368…u+1.83928…
u2+1.54368…u+1.83928…≈0
ニュートン・ラプソン法を使用して u2+1.54368…u+1.83928…=0 の解を1つ求める:以下の解はない: u∈R
u2+1.54368…u+1.83928…=0
ニュートン・ラプソン概算の定義
f(u)=u2+1.54368…u+1.83928…
発見する f′(u):2u+1.54368…
dud(u2+1.54368…u+1.83928…)
和/差の法則を適用: (f±g)′=f′±g′=dud(u2)+dud(1.54368…u)+dud(1.83928…)
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dud(1.54368…u)=1.54368…
dud(1.54368…u)
定数を除去: (a⋅f)′=a⋅f′=1.54368…dudu
共通の導関数を適用: dudu=1=1.54368…⋅1
簡素化=1.54368…
dud(1.83928…)=0
dud(1.83928…)
定数の導関数: dxd(a)=0=0
=2u+1.54368…+0
簡素化=2u+1.54368…
仮定: u0=−1Δun+1<になるまで un+1を計算する 0.000001
u1=1.83928…:Δu1=2.83928…
f(u0)=(−1)2+1.54368…(−1)+1.83928…=1.29559…f′(u0)=2(−1)+1.54368…=−0.45631…u1=1.83928…
Δu1=∣1.83928…−(−1)∣=2.83928…Δu1=2.83928…
u2=0.29559…:Δu2=1.54368…
f(u1)=1.83928…2+1.54368…⋅1.83928…+1.83928…=8.06154…f′(u1)=2⋅1.83928…+1.54368…=5.22226…u2=0.29559…
Δu2=∣0.29559…−1.83928…∣=1.54368…Δu2=1.54368…
u3=−0.82061…:Δu3=1.11620…
f(u2)=0.29559…2+1.54368…⋅0.29559…+1.83928…=2.38297…f′(u2)=2⋅0.29559…+1.54368…=2.13488…u3=−0.82061…
Δu3=∣−0.82061…−0.29559…∣=1.11620…Δu3=1.11620…
u4=11.95386…:Δu4=12.77447…
f(u3)=(−0.82061…)2+1.54368…(−0.82061…)+1.83928…=1.24592…f′(u3)=2(−0.82061…)+1.54368…=−0.09753…u4=11.95386…
Δu4=∣11.95386…−(−0.82061…)∣=12.77447…Δu4=12.77447…
u5=5.54214…:Δu5=6.41171…
f(u4)=11.95386…2+1.54368…⋅11.95386…+1.83928…=163.18717…f′(u4)=2⋅11.95386…+1.54368…=25.45141…u5=5.54214…
Δu5=∣5.54214…−11.95386…∣=6.41171…Δu5=6.41171…
u6=2.28667…:Δu6=3.25547…
f(u5)=5.54214…2+1.54368…⋅5.54214…+1.83928…=41.11006…f′(u5)=2⋅5.54214…+1.54368…=12.62798…u6=2.28667…
Δu6=∣2.28667…−5.54214…∣=3.25547…Δu6=3.25547…
u7=0.55412…:Δu7=1.73255…
f(u6)=2.28667…2+1.54368…⋅2.28667…+1.83928…=10.59809…f′(u6)=2⋅2.28667…+1.54368…=6.11704…u7=0.55412…
Δu7=∣0.55412…−2.28667…∣=1.73255…Δu7=1.73255…
u8=−0.57777…:Δu8=1.13190…
f(u7)=0.55412…2+1.54368…⋅0.55412…+1.83928…=3.00173…f′(u7)=2⋅0.55412…+1.54368…=2.65193…u8=−0.57777…
Δu8=∣−0.57777…−0.55412…∣=1.13190…Δu8=1.13190…
u9=−3.87872…:Δu9=3.30094…
f(u8)=(−0.57777…)2+1.54368…(−0.57777…)+1.83928…=1.28120…f′(u8)=2(−0.57777…)+1.54368…=0.38813…u9=−3.87872…
Δu9=∣−3.87872…−(−0.57777…)∣=3.30094…Δu9=3.30094…
u10=−2.12515…:Δu10=1.75356…
f(u9)=(−3.87872…)2+1.54368…(−3.87872…)+1.83928…=10.89622…f′(u9)=2(−3.87872…)+1.54368…=−6.21375…u10=−2.12515…
Δu10=∣−2.12515…−(−3.87872…)∣=1.75356…Δu10=1.75356…
u11=−0.98905…:Δu11=1.13610…
f(u10)=(−2.12515…)2+1.54368…(−2.12515…)+1.83928…=3.07499…f′(u10)=2(−2.12515…)+1.54368…=−2.70662…u11=−0.98905…
Δu11=∣−0.98905…−(−2.12515…)∣=1.13610…Δu11=1.13610…
u12=1.98207…:Δu12=2.97113…
f(u11)=(−0.98905…)2+1.54368…(−0.98905…)+1.83928…=1.29072…f′(u11)=2(−0.98905…)+1.54368…=−0.43442…u12=1.98207…
Δu12=∣1.98207…−(−0.98905…)∣=2.97113…Δu12=2.97113…
u13=0.37934…:Δu13=1.60273…
f(u12)=1.98207…2+1.54368…⋅1.98207…+1.83928…=8.82763…f′(u12)=2⋅1.98207…+1.54368…=5.50784…u13=0.37934…
Δu13=∣0.37934…−1.98207…∣=1.60273…Δu13=1.60273…
u14=−0.73636…:Δu14=1.11570…
f(u13)=0.37934…2+1.54368…⋅0.37934…+1.83928…=2.56876…f′(u13)=2⋅0.37934…+1.54368…=2.30236…u14=−0.73636…
Δu14=∣−0.73636…−0.37934…∣=1.11570…Δu14=1.11570…
u15=−18.27956…:Δu15=17.54320…
f(u14)=(−0.73636…)2+1.54368…(−0.73636…)+1.83928…=1.24480…f′(u14)=2(−0.73636…)+1.54368…=0.07095…u15=−18.27956…
Δu15=∣−18.27956…−(−0.73636…)∣=17.54320…Δu15=17.54320…
解を見つけられない
解はu≈0.54368…
代用を戻す u=sin(x)sin(x)≈0.54368…
sin(x)≈0.54368…
sin(x)=0.54368…:x=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
sin(x)=0.54368…
三角関数の逆数プロパティを適用する
sin(x)=0.54368…
以下の一般解 sin(x)=0.54368…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
x=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
すべての解を組み合わせるx=arcsin(0.54368…)+2πn,x=π−arcsin(0.54368…)+2πn
10進法形式で解を証明するx=0.57482…+2πn,x=π−0.57482…+2πn