解
sin3(x)−2sin(x)=4cos2(x)−3
解
x=−0.32154…+2πn,x=π+0.32154…+2πn,x=0.80194…+2πn,x=π−0.80194…+2πn
+1
度
x=−18.42305…∘+360∘n,x=198.42305…∘+360∘n,x=45.94805…∘+360∘n,x=134.05194…∘+360∘n解答ステップ
sin3(x)−2sin(x)=4cos2(x)−3
両辺から4cos2(x)−3を引くsin3(x)−2sin(x)−4cos2(x)+3=0
三角関数の公式を使用して書き換える
3+sin3(x)−2sin(x)−4cos2(x)
ピタゴラスの公式を使用する: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=3+sin3(x)−2sin(x)−4(1−sin2(x))
簡素化 3+sin3(x)−2sin(x)−4(1−sin2(x)):sin3(x)+4sin2(x)−2sin(x)−1
3+sin3(x)−2sin(x)−4(1−sin2(x))
拡張 −4(1−sin2(x)):−4+4sin2(x)
−4(1−sin2(x))
分配法則を適用する: a(b−c)=ab−aca=−4,b=1,c=sin2(x)=−4⋅1−(−4)sin2(x)
マイナス・プラスの規則を適用する−(−a)=a=−4⋅1+4sin2(x)
数を乗じる:4⋅1=4=−4+4sin2(x)
=3+sin3(x)−2sin(x)−4+4sin2(x)
簡素化 3+sin3(x)−2sin(x)−4+4sin2(x):sin3(x)+4sin2(x)−2sin(x)−1
3+sin3(x)−2sin(x)−4+4sin2(x)
条件のようなグループ=sin3(x)−2sin(x)+4sin2(x)+3−4
数を足す/引く:3−4=−1=sin3(x)+4sin2(x)−2sin(x)−1
=sin3(x)+4sin2(x)−2sin(x)−1
=sin3(x)+4sin2(x)−2sin(x)−1
−1+sin3(x)−2sin(x)+4sin2(x)=0
置換で解く
−1+sin3(x)−2sin(x)+4sin2(x)=0
仮定:sin(x)=u−1+u3−2u+4u2=0
−1+u3−2u+4u2=0:u≈−0.31603…,u≈0.71870…,u≈−4.40267…
−1+u3−2u+4u2=0
標準的な形式で書く anxn+…+a1x+a0=0u3+4u2−2u−1=0
ニュートン・ラプソン法を使用して u3+4u2−2u−1=0 の解を1つ求める:u≈−0.31603…
u3+4u2−2u−1=0
ニュートン・ラプソン概算の定義
f(u)=u3+4u2−2u−1
発見する f′(u):3u2+8u−2
dud(u3+4u2−2u−1)
和/差の法則を適用: (f±g)′=f′±g′=dud(u3)+dud(4u2)−dud(2u)−dud(1)
dud(u3)=3u2
dud(u3)
乗の法則を適用: dxd(xa)=a⋅xa−1=3u3−1
簡素化=3u2
dud(4u2)=8u
dud(4u2)
定数を除去: (a⋅f)′=a⋅f′=4dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=4⋅2u2−1
簡素化=8u
dud(2u)=2
dud(2u)
定数を除去: (a⋅f)′=a⋅f′=2dudu
共通の導関数を適用: dudu=1=2⋅1
簡素化=2
dud(1)=0
dud(1)
定数の導関数: dxd(a)=0=0
=3u2+8u−2−0
簡素化=3u2+8u−2
仮定: u0=0Δun+1<になるまで un+1を計算する 0.000001
u1=−0.5:Δu1=0.5
f(u0)=03+4⋅02−2⋅0−1=−1f′(u0)=3⋅02+8⋅0−2=−2u1=−0.5
Δu1=∣−0.5−0∣=0.5Δu1=0.5
u2=−0.33333…:Δu2=0.16666…
f(u1)=(−0.5)3+4(−0.5)2−2(−0.5)−1=0.875f′(u1)=3(−0.5)2+8(−0.5)−2=−5.25u2=−0.33333…
Δu2=∣−0.33333…−(−0.5)∣=0.16666…Δu2=0.16666…
u3=−0.31623…:Δu3=0.01709…
f(u2)=(−0.33333…)3+4(−0.33333…)2−2(−0.33333…)−1=0.07407…f′(u2)=3(−0.33333…)2+8(−0.33333…)−2=−4.33333…u3=−0.31623…
Δu3=∣−0.31623…−(−0.33333…)∣=0.01709…Δu3=0.01709…
u4=−0.31603…:Δu4=0.00020…
f(u3)=(−0.31623…)3+4(−0.31623…)2−2(−0.31623…)−1=0.00088…f′(u3)=3(−0.31623…)2+8(−0.31623…)−2=−4.22989…u4=−0.31603…
Δu4=∣−0.31603…−(−0.31623…)∣=0.00020…Δu4=0.00020…
u5=−0.31603…:Δu5=3.13479E−8
f(u4)=(−0.31603…)3+4(−0.31603…)2−2(−0.31603…)−1=1.32558E−7f′(u4)=3(−0.31603…)2+8(−0.31603…)−2=−4.22862…u5=−0.31603…
Δu5=∣−0.31603…−(−0.31603…)∣=3.13479E−8Δu5=3.13479E−8
u≈−0.31603…
長除法を適用する:u+0.31603…u3+4u2−2u−1=u2+3.68396…u−3.16424…
u2+3.68396…u−3.16424…≈0
ニュートン・ラプソン法を使用して u2+3.68396…u−3.16424…=0 の解を1つ求める:u≈0.71870…
u2+3.68396…u−3.16424…=0
ニュートン・ラプソン概算の定義
f(u)=u2+3.68396…u−3.16424…
発見する f′(u):2u+3.68396…
dud(u2+3.68396…u−3.16424…)
和/差の法則を適用: (f±g)′=f′±g′=dud(u2)+dud(3.68396…u)−dud(3.16424…)
dud(u2)=2u
dud(u2)
乗の法則を適用: dxd(xa)=a⋅xa−1=2u2−1
簡素化=2u
dud(3.68396…u)=3.68396…
dud(3.68396…u)
定数を除去: (a⋅f)′=a⋅f′=3.68396…dudu
共通の導関数を適用: dudu=1=3.68396…⋅1
簡素化=3.68396…
dud(3.16424…)=0
dud(3.16424…)
定数の導関数: dxd(a)=0=0
=2u+3.68396…−0
簡素化=2u+3.68396…
仮定: u0=1Δun+1<になるまで un+1を計算する 0.000001
u1=0.73263…:Δu1=0.26736…
f(u0)=12+3.68396…⋅1−3.16424…=1.51972…f′(u0)=2⋅1+3.68396…=5.68396…u1=0.73263…
Δu1=∣0.73263…−1∣=0.26736…Δu1=0.26736…
u2=0.71874…:Δu2=0.01388…
f(u1)=0.73263…2+3.68396…⋅0.73263…−3.16424…=0.07148…f′(u1)=2⋅0.73263…+3.68396…=5.14922…u2=0.71874…
Δu2=∣0.71874…−0.73263…∣=0.01388…Δu2=0.01388…
u3=0.71870…:Δu3=0.00003…
f(u2)=0.71874…2+3.68396…⋅0.71874…−3.16424…=0.00019…f′(u2)=2⋅0.71874…+3.68396…=5.12146…u3=0.71870…
Δu3=∣0.71870…−0.71874…∣=0.00003…Δu3=0.00003…
u4=0.71870…:Δu4=2.76537E−10
f(u3)=0.71870…2+3.68396…⋅0.71870…−3.16424…=1.41625E−9f′(u3)=2⋅0.71870…+3.68396…=5.12138…u4=0.71870…
Δu4=∣0.71870…−0.71870…∣=2.76537E−10Δu4=2.76537E−10
u≈0.71870…
長除法を適用する:u−0.71870…u2+3.68396…u−3.16424…=u+4.40267…
u+4.40267…≈0
u≈−4.40267…
解答はu≈−0.31603…,u≈0.71870…,u≈−4.40267…
代用を戻す u=sin(x)sin(x)≈−0.31603…,sin(x)≈0.71870…,sin(x)≈−4.40267…
sin(x)≈−0.31603…,sin(x)≈0.71870…,sin(x)≈−4.40267…
sin(x)=−0.31603…:x=arcsin(−0.31603…)+2πn,x=π+arcsin(0.31603…)+2πn
sin(x)=−0.31603…
三角関数の逆数プロパティを適用する
sin(x)=−0.31603…
以下の一般解 sin(x)=−0.31603…sin(x)=−a⇒x=arcsin(−a)+2πn,x=π+arcsin(a)+2πnx=arcsin(−0.31603…)+2πn,x=π+arcsin(0.31603…)+2πn
x=arcsin(−0.31603…)+2πn,x=π+arcsin(0.31603…)+2πn
sin(x)=0.71870…:x=arcsin(0.71870…)+2πn,x=π−arcsin(0.71870…)+2πn
sin(x)=0.71870…
三角関数の逆数プロパティを適用する
sin(x)=0.71870…
以下の一般解 sin(x)=0.71870…sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πnx=arcsin(0.71870…)+2πn,x=π−arcsin(0.71870…)+2πn
x=arcsin(0.71870…)+2πn,x=π−arcsin(0.71870…)+2πn
sin(x)=−4.40267…:解なし
sin(x)=−4.40267…
−1≤sin(x)≤1解なし
すべての解を組み合わせるx=arcsin(−0.31603…)+2πn,x=π+arcsin(0.31603…)+2πn,x=arcsin(0.71870…)+2πn,x=π−arcsin(0.71870…)+2πn
10進法形式で解を証明するx=−0.32154…+2πn,x=π+0.32154…+2πn,x=0.80194…+2πn,x=π−0.80194…+2πn