解
0.6=cosh(0.4m)cosh(0.2m)
解
m=ln(0.03402…),m=ln(29.38731…)
+1
度
m=−193.69199…∘,m=193.69199…∘解答ステップ
0.6=cosh(0.4m)cosh(0.2m)
辺を交換するcosh(0.4m)cosh(0.2m)=0.6
三角関数の公式を使用して書き換える
cosh(0.4m)cosh(0.2m)=0.6
双曲線の公式を使用する: cosh(x)=2ex+e−x2e0.4m+e−0.4m2e0.2m+e−0.2m=0.6
2e0.4m+e−0.4m2e0.2m+e−0.2m=0.6
2e0.4m+e−0.4m2e0.2m+e−0.2m=0.6:m=ln(0.03402…),m=ln(29.38731…)
2e0.4m+e−0.4m2e0.2m+e−0.2m=0.6
以下で両辺を乗じる:2e0.4m+e−0.4m2e0.4m+e−0.4m2e0.2m+e−0.2m⋅2e0.4m+e−0.4m=0.6⋅2e0.4m+e−0.4m
簡素化2e0.2m+e−0.2m=20.6(e0.4m+e−0.4m)
指数の規則を適用する
2e0.2m+e−0.2m=20.6(e0.4m+e−0.4m)
指数の規則を適用する: abc=(ab)ce0.2m=(em)0.2,e−0.2m=(em)−0.2,e0.4m=(em)0.4,e−0.4m=(em)−0.42(em)0.2+(em)−0.2=20.6((em)0.4+(em)−0.4)
2(em)0.2+(em)−0.2=20.6((em)0.4+(em)−0.4)
equationを以下で書き換える: em=u2(u)0.2+(u)−0.2=20.6((u)0.4+(u)−0.4)
解く 2u0.2+u−0.2=20.6(u0.4+u−0.4):u=0.03402…,u=29.38731…
2u0.2+u−0.2=20.6(u0.4+u−0.4)
以下で両辺を乗じる:22u0.2+u−0.2⋅2=20.6(u0.4+u−0.4)⋅2
簡素化u0.2+u−0.2=0.6(u0.4+u−0.4)
拡張 u0.2+u−0.2:u0.2+u0.21
u0.2+u−0.2
指数の規則を適用する: a−b=ab1=u0.2+u0.21
拡張 0.6(u0.4+u−0.4):0.6u0.4+u0.40.6
0.6(u0.4+u−0.4)
指数の規則を適用する: a−b=ab1=0.6(u0.4+u0.41)
分配法則を適用する: a(b+c)=ab+aca=0.6,b=u0.4,c=u0.41=0.6u0.4+0.6⋅u0.41
0.6⋅u0.41=u0.40.6
0.6⋅u0.41
分数を乗じる: a⋅cb=ca⋅b=u0.41⋅0.6
数を乗じる:1⋅0.6=0.6=u0.40.6
=0.6u0.4+u0.40.6
u0.2+u0.21=0.6u0.4+u0.40.6
以下のべき指数プロパティを使用する:an=(ma)(n⋅m)u0.4=(5u)(0.4⋅5)5u+5u1=0.6(5u)2+(5u)20.6
equationを以下で書き換える: 5u=vv+v1=0.6v2+v20.6
解く v+v1=0.6v2+v20.6:v≈0.50859…,v≈1.96621…
v+v1=0.6v2+v20.6
LCMで乗じる
v+v1=0.6v2+v20.6
小数点を取り除くには, 小数点以下の各桁に10を乗じます小数点の右側は1桁なので, 10を乗じますv⋅10+v1⋅10=0.6v2⋅10+v20.6⋅10
改良10v+v10=6v2+v26
以下の最小公倍数を求める: v,v2:v2
v,v2
最小公倍数 (LCM)
v または以下のいずれかに現れる因数で構成された式を計算する: v2=v2
以下で乗じる: LCM=v210vv2+v10v2=6v2v2+v26v2
簡素化
10vv2+v10v2=6v2v2+v26v2
簡素化 10vv2:10v3
10vv2
指数の規則を適用する: ab⋅ac=ab+cvv2=v1+2=10v1+2
数を足す:1+2=3=10v3
簡素化 v10v2:10v
v10v2
分数を乗じる: a⋅cb=ca⋅b=v10v2
共通因数を約分する:v=10v
簡素化 6v2v2:6v4
6v2v2
指数の規則を適用する: ab⋅ac=ab+cv2v2=v2+2=6v2+2
数を足す:2+2=4=6v4
簡素化 v26v2:6
v26v2
分数を乗じる: a⋅cb=ca⋅b=v26v2
共通因数を約分する:v2=6
10v3+10v=6v4+6
10v3+10v=6v4+6
10v3+10v=6v4+6
解く 10v3+10v=6v4+6:v≈0.50859…,v≈1.96621…
10v3+10v=6v4+6
辺を交換する6v4+6=10v3+10v
10vを左側に移動します
6v4+6=10v3+10v
両辺から10vを引く6v4+6−10v=10v3+10v−10v
簡素化6v4+6−10v=10v3
6v4+6−10v=10v3
10v3を左側に移動します
6v4+6−10v=10v3
両辺から10v3を引く6v4+6−10v−10v3=10v3−10v3
簡素化6v4+6−10v−10v3=0
6v4+6−10v−10v3=0
標準的な形式で書く anxn+…+a1x+a0=06v4−10v3−10v+6=0
ニュートン・ラプソン法を使用して 6v4−10v3−10v+6=0 の解を1つ求める:v≈0.50859…
6v4−10v3−10v+6=0
ニュートン・ラプソン概算の定義
f(v)=6v4−10v3−10v+6
発見する f′(v):24v3−30v2−10
dvd(6v4−10v3−10v+6)
和/差の法則を適用: (f±g)′=f′±g′=dvd(6v4)−dvd(10v3)−dvd(10v)+dvd(6)
dvd(6v4)=24v3
dvd(6v4)
定数を除去: (a⋅f)′=a⋅f′=6dvd(v4)
乗の法則を適用: dxd(xa)=a⋅xa−1=6⋅4v4−1
簡素化=24v3
dvd(10v3)=30v2
dvd(10v3)
定数を除去: (a⋅f)′=a⋅f′=10dvd(v3)
乗の法則を適用: dxd(xa)=a⋅xa−1=10⋅3v3−1
簡素化=30v2
dvd(10v)=10
dvd(10v)
定数を除去: (a⋅f)′=a⋅f′=10dvdv
共通の導関数を適用: dvdv=1=10⋅1
簡素化=10
dvd(6)=0
dvd(6)
定数の導関数: dxd(a)=0=0
=24v3−30v2−10+0
簡素化=24v3−30v2−10
仮定: v0=1Δvn+1<になるまで vn+1を計算する 0.000001
v1=0.5:Δv1=0.5
f(v0)=6⋅14−10⋅13−10⋅1+6=−8f′(v0)=24⋅13−30⋅12−10=−16v1=0.5
Δv1=∣0.5−1∣=0.5Δv1=0.5
v2=0.50862…:Δv2=0.00862…
f(v1)=6⋅0.54−10⋅0.53−10⋅0.5+6=0.125f′(v1)=24⋅0.53−30⋅0.52−10=−14.5v2=0.50862…
Δv2=∣0.50862…−0.5∣=0.00862…Δv2=0.00862…
v3=0.50859…:Δv3=0.00003…
f(v2)=6⋅0.50862…4−10⋅0.50862…3−10⋅0.50862…+6=−0.00044…f′(v2)=24⋅0.50862…3−30⋅0.50862…2−10=−14.60298…v3=0.50859…
Δv3=∣0.50859…−0.50862…∣=0.00003…Δv3=0.00003…
v4=0.50859…:Δv4=3.77392E−10
f(v3)=6⋅0.50859…4−10⋅0.50859…3−10⋅0.50859…+6=−5.51091E−9f′(v3)=24⋅0.50859…3−30⋅0.50859…2−10=−14.60262…v4=0.50859…
Δv4=∣0.50859…−0.50859…∣=3.77392E−10Δv4=3.77392E−10
v≈0.50859…
長除法を適用する:v−0.50859…6v4−10v3−10v+6=6v3−6.94845…v2−3.53391…v−11.79731…
6v3−6.94845…v2−3.53391…v−11.79731…≈0
ニュートン・ラプソン法を使用して 6v3−6.94845…v2−3.53391…v−11.79731…=0 の解を1つ求める:v≈1.96621…
6v3−6.94845…v2−3.53391…v−11.79731…=0
ニュートン・ラプソン概算の定義
f(v)=6v3−6.94845…v2−3.53391…v−11.79731…
発見する f′(v):18v2−13.89691…v−3.53391…
dvd(6v3−6.94845…v2−3.53391…v−11.79731…)
和/差の法則を適用: (f±g)′=f′±g′=dvd(6v3)−dvd(6.94845…v2)−dvd(3.53391…v)−dvd(11.79731…)
dvd(6v3)=18v2
dvd(6v3)
定数を除去: (a⋅f)′=a⋅f′=6dvd(v3)
乗の法則を適用: dxd(xa)=a⋅xa−1=6⋅3v3−1
簡素化=18v2
dvd(6.94845…v2)=13.89691…v
dvd(6.94845…v2)
定数を除去: (a⋅f)′=a⋅f′=6.94845…dvd(v2)
乗の法則を適用: dxd(xa)=a⋅xa−1=6.94845…⋅2v2−1
簡素化=13.89691…v
dvd(3.53391…v)=3.53391…
dvd(3.53391…v)
定数を除去: (a⋅f)′=a⋅f′=3.53391…dvdv
共通の導関数を適用: dvdv=1=3.53391…⋅1
簡素化=3.53391…
dvd(11.79731…)=0
dvd(11.79731…)
定数の導関数: dxd(a)=0=0
=18v2−13.89691…v−3.53391…−0
簡素化=18v2−13.89691…v−3.53391…
仮定: v0=−3Δvn+1<になるまで vn+1を計算する 0.000001
v1=−1.87222…:Δv1=1.12777…
f(v0)=6(−3)3−6.94845…(−3)2−3.53391…(−3)−11.79731…=−225.73168…f′(v0)=18(−3)2−13.89691…(−3)−3.53391…=200.15683…v1=−1.87222…
Δv1=∣−1.87222…−(−3)∣=1.12777…Δv1=1.12777…
v2=−1.06697…:Δv2=0.80525…
f(v1)=6(−1.87222…)3−6.94845…(−1.87222…)2−3.53391…(−1.87222…)−11.79731…=−68.91246…f′(v1)=18(−1.87222…)2−13.89691…(−1.87222…)−3.53391…=85.57838…v2=−1.06697…
Δv2=∣−1.06697…−(−1.87222…)∣=0.80525…Δv2=0.80525…
v3=−0.33628…:Δv3=0.73068…
f(v2)=6(−1.06697…)3−6.94845…(−1.06697…)2−3.53391…(−1.06697…)−11.79731…=−23.22503…f′(v2)=18(−1.06697…)2−13.89691…(−1.06697…)−3.53391…=31.78535…v3=−0.33628…
Δv3=∣−0.33628…−(−1.06697…)∣=0.73068…Δv3=0.73068…
v4=3.32442…:Δv4=3.66071…
f(v3)=6(−0.33628…)3−6.94845…(−0.33628…)2−3.53391…(−0.33628…)−11.79731…=−11.62288…f′(v3)=18(−0.33628…)2−13.89691…(−0.33628…)−3.53391…=3.17502…v4=3.32442…
Δv4=∣3.32442…−(−0.33628…)∣=3.66071…Δv4=3.66071…
v5=2.51941…:Δv5=0.80501…
f(v4)=6⋅3.32442…3−6.94845…⋅3.32442…2−3.53391…⋅3.32442…−11.79731…=120.10728…f′(v4)=18⋅3.32442…2−13.89691…⋅3.32442…−3.53391…=149.19962…v5=2.51941…
Δv5=∣2.51941…−3.32442…∣=0.80501…Δv5=0.80501…
v6=2.10802…:Δv6=0.41139…
f(v5)=6⋅2.51941…3−6.94845…⋅2.51941…2−3.53391…⋅2.51941…−11.79731…=31.14567…f′(v5)=18⋅2.51941…2−13.89691…⋅2.51941…−3.53391…=75.70833…v6=2.10802…
Δv6=∣2.10802…−2.51941…∣=0.41139…Δv6=0.41139…
v7=1.97907…:Δv7=0.12895…
f(v6)=6⋅2.10802…3−6.94845…⋅2.10802…2−3.53391…⋅2.10802…−11.79731…=6.08132…f′(v6)=18⋅2.10802…2−13.89691…⋅2.10802…−3.53391…=47.15903…v7=1.97907…
Δv7=∣1.97907…−2.10802…∣=0.12895…Δv7=0.12895…
v8=1.96633…:Δv8=0.01273…
f(v7)=6⋅1.97907…3−6.94845…⋅1.97907…2−3.53391…⋅1.97907…−11.79731…=0.50256…f′(v7)=18⋅1.97907…2−13.89691…⋅1.97907…−3.53391…=39.46425…v8=1.96633…
Δv8=∣1.96633…−1.97907…∣=0.01273…Δv8=0.01273…
v9=1.96621…:Δv9=0.00011…
f(v8)=6⋅1.96633…3−6.94845…⋅1.96633…2−3.53391…⋅1.96633…−11.79731…=0.00463…f′(v8)=18⋅1.96633…2−13.89691…⋅1.96633…−3.53391…=38.73684…v9=1.96621…
Δv9=∣1.96621…−1.96633…∣=0.00011…Δv9=0.00011…
v10=1.96621…:Δv10=1.05283E−8
f(v9)=6⋅1.96621…3−6.94845…⋅1.96621…2−3.53391…⋅1.96621…−11.79731…=4.0776E−7f′(v9)=18⋅1.96621…2−13.89691…⋅1.96621…−3.53391…=38.73003…v10=1.96621…
Δv10=∣1.96621…−1.96621…∣=1.05283E−8Δv10=1.05283E−8
v≈1.96621…
長除法を適用する:v−1.96621…6v3−6.94845…v2−3.53391…v−11.79731…=6v2+4.84885…v+6
6v2+4.84885…v+6≈0
ニュートン・ラプソン法を使用して 6v2+4.84885…v+6=0 の解を1つ求める:以下の解はない: v∈R
6v2+4.84885…v+6=0
ニュートン・ラプソン概算の定義
f(v)=6v2+4.84885…v+6
発見する f′(v):12v+4.84885…
dvd(6v2+4.84885…v+6)
和/差の法則を適用: (f±g)′=f′±g′=dvd(6v2)+dvd(4.84885…v)+dvd(6)
dvd(6v2)=12v
dvd(6v2)
定数を除去: (a⋅f)′=a⋅f′=6dvd(v2)
乗の法則を適用: dxd(xa)=a⋅xa−1=6⋅2v2−1
簡素化=12v
dvd(4.84885…v)=4.84885…
dvd(4.84885…v)
定数を除去: (a⋅f)′=a⋅f′=4.84885…dvdv
共通の導関数を適用: dvdv=1=4.84885…⋅1
簡素化=4.84885…
dvd(6)=0
dvd(6)
定数の導関数: dxd(a)=0=0
=12v+4.84885…+0
簡素化=12v+4.84885…
仮定: v0=−1Δvn+1<になるまで vn+1を計算する 0.000001
v1=0:Δv1=1
f(v0)=6(−1)2+4.84885…(−1)+6=7.15114…f′(v0)=12(−1)+4.84885…=−7.15114…v1=0
Δv1=∣0−(−1)∣=1Δv1=1
v2=−1.23740…:Δv2=1.23740…
f(v1)=6⋅02+4.84885…⋅0+6=6f′(v1)=12⋅0+4.84885…=4.84885…v2=−1.23740…
Δv2=∣−1.23740…−0∣=1.23740…Δv2=1.23740…
v3=−0.31870…:Δv3=0.91870…
f(v2)=6(−1.23740…)2+4.84885…(−1.23740…)+6=9.18702…f′(v2)=12(−1.23740…)+4.84885…=−10v3=−0.31870…
Δv3=∣−0.31870…−(−1.23740…)∣=0.91870…Δv3=0.91870…
v4=−5.26202…:Δv4=4.94332…
f(v3)=6(−0.31870…)2+4.84885…(−0.31870…)+6=5.06408…f′(v3)=12(−0.31870…)+4.84885…=1.02442…v4=−5.26202…
Δv4=∣−5.26202…−(−0.31870…)∣=4.94332…Δv4=4.94332…
v5=−2.74693…:Δv5=2.51509…
f(v4)=6(−5.26202…)2+4.84885…(−5.26202…)+6=146.61875…f′(v4)=12(−5.26202…)+4.84885…=−58.29546…v5=−2.74693…
Δv5=∣−2.74693…−(−5.26202…)∣=2.51509…Δv5=2.51509…
v6=−1.39693…:Δv6=1.34999…
f(v5)=6(−2.74693…)2+4.84885…(−2.74693…)+6=37.95427…f′(v5)=12(−2.74693…)+4.84885…=−28.11430…v6=−1.39693…
Δv6=∣−1.39693…−(−2.74693…)∣=1.34999…Δv6=1.34999…
v7=−0.47912…:Δv7=0.91780…
f(v6)=6(−1.39693…)2+4.84885…(−1.39693…)+6=10.93498…f′(v6)=12(−1.39693…)+4.84885…=−11.91431…v7=−0.47912…
Δv7=∣−0.47912…−(−1.39693…)∣=0.91780…Δv7=0.91780…
v8=5.13225…:Δv8=5.61138…
f(v7)=6(−0.47912…)2+4.84885…(−0.47912…)+6=5.05415…f′(v7)=12(−0.47912…)+4.84885…=−0.90069…v8=5.13225…
Δv8=∣5.13225…−(−0.47912…)∣=5.61138…Δv8=5.61138…
v9=2.28852…:Δv9=2.84373…
f(v8)=6⋅5.13225…2+4.84885…⋅5.13225…+6=188.92585…f′(v8)=12⋅5.13225…+4.84885…=66.43592…v9=2.28852…
Δv9=∣2.28852…−5.13225…∣=2.84373…Δv9=2.84373…
v10=0.78685…:Δv10=1.50167…
f(v9)=6⋅2.28852…2+4.84885…⋅2.28852…+6=48.52081…f′(v9)=12⋅2.28852…+4.84885…=32.31115…v10=0.78685…
Δv10=∣0.78685…−2.28852…∣=1.50167…Δv10=1.50167…
v11=−0.15990…:Δv11=0.94675…
f(v10)=6⋅0.78685…2+4.84885…⋅0.78685…+6=13.53014…f′(v10)=12⋅0.78685…+4.84885…=14.29107…v11=−0.15990…
Δv11=∣−0.15990…−0.78685…∣=0.94675…Δv11=0.94675…
v12=−1.99540…:Δv12=1.83550…
f(v11)=6(−0.15990…)2+4.84885…(−0.15990…)+6=5.37806…f′(v11)=12(−0.15990…)+4.84885…=2.93001…v12=−1.99540…
Δv12=∣−1.99540…−(−0.15990…)∣=1.83550…Δv12=1.83550…
解を見つけられない
解答はv≈0.50859…,v≈1.96621…
v≈0.50859…,v≈1.96621…
解を検算する
未定義の (特異) 点を求める:v=0
v+v1 の分母をゼロに比較する
v=0
0.6v2+v20.6 の分母をゼロに比較する
解く v2=0:v=0
v2=0
規則を適用 xn=0⇒x=0
v=0
以下の点は定義されていないv=0
未定義のポイントを解に組み合わせる:
v≈0.50859…,v≈1.96621…
v≈0.50859…,v≈1.96621…
再び v=5uに置き換えて以下を解く: u
解く 5u=0.50859…:u=0.03402…
5u=0.50859…
equationの両辺を以下の累乗にする:5:u=0.03402…
5u=0.50859…
(5u)5=0.50859…5
拡張 (5u)5:u
(5u)5
累乗根の規則を適用する: na=an1=(u51)5
指数の規則を適用する: (ab)c=abc=u51⋅5
51⋅5=1
51⋅5
分数を乗じる: a⋅cb=ca⋅b=51⋅5
共通因数を約分する:5=1
=u
拡張 0.50859…5:0.03402…
0.50859…5
0.50859…5=0.03402…=0.03402…
u=0.03402…
u=0.03402…
解を検算する:u=0.03402…真
5u=0.50859… に当てはめて解を確認する
equationに一致しないものを削除する。
挿入 u=0.03402…:真
50.03402…=0.50859…
50.03402…=0.50859…
50.03402…
50.03402…=0.50859…=0.50859…
0.50859…=0.50859…
真
解はu=0.03402…
解く 5u=1.96621…:u=29.38731…
5u=1.96621…
equationの両辺を以下の累乗にする:5:u=29.38731…
5u=1.96621…
(5u)5=1.96621…5
拡張 (5u)5:u
(5u)5
累乗根の規則を適用する: na=an1=(u51)5
指数の規則を適用する: (ab)c=abc=u51⋅5
51⋅5=1
51⋅5
分数を乗じる: a⋅cb=ca⋅b=51⋅5
共通因数を約分する:5=1
=u
拡張 1.96621…5:29.38731…
1.96621…5
1.96621…5=29.38731…=29.38731…
u=29.38731…
u=29.38731…
解を検算する:u=29.38731…真
5u=1.96621… に当てはめて解を確認する
equationに一致しないものを削除する。
挿入 u=29.38731…:真
529.38731…=1.96621…
529.38731…=1.96621…
529.38731…
529.38731…=1.96621…=1.96621…
1.96621…=1.96621…
真
解はu=29.38731…
u=0.03402…,u=29.38731…
解を検算する:u=0.03402…真,u=29.38731…真
2u0.2+u−0.2=20.6(u0.4+u−0.4) に当てはめて解を確認する
equationに一致しないものを削除する。
挿入 u=0.03402…:真
20.03402…0.2+0.03402…−0.2=20.6(0.03402…0.4+0.03402…−0.4)
20.03402…0.2+0.03402…−0.2=1.23740…
20.03402…0.2+0.03402…−0.2
0.03402…0.2=0.50859…=20.50859…+0.03402…−0.2
0.03402…−0.2=1.96621…=20.50859…+1.96621…
数を足す:0.50859…+1.96621…=2.47480…=22.47480…
数を割る:22.47480…=1.23740…=1.23740…
20.6(0.03402…0.4+0.03402…−0.4)=1.23740…
20.6(0.03402…0.4+0.03402…−0.4)
数を割る:20.6=0.3=0.3(0.03402…0.4+0.03402…−0.4)
0.03402…0.4=0.25866…=0.3(0.25866…+0.03402…−0.4)
0.03402…−0.4=3.86601…=0.3(0.25866…+3.86601…)
数を足す:0.25866…+3.86601…=4.12468…=0.3⋅4.12468…
数を乗じる:0.3⋅4.12468…=1.23740…=1.23740…
1.23740…=1.23740…
真
挿入 u=29.38731…:真
229.38731…0.2+29.38731…−0.2=20.6(29.38731…0.4+29.38731…−0.4)
229.38731…0.2+29.38731…−0.2=1.23740…
229.38731…0.2+29.38731…−0.2
29.38731…0.2=1.96621…=21.96621…+29.38731…−0.2
29.38731…−0.2=0.50859…=21.96621…+0.50859…
数を足す:1.96621…+0.50859…=2.47480…=22.47480…
数を割る:22.47480…=1.23740…=1.23740…
20.6(29.38731…0.4+29.38731…−0.4)=1.23740…
20.6(29.38731…0.4+29.38731…−0.4)
数を割る:20.6=0.3=0.3(29.38731…0.4+29.38731…−0.4)
29.38731…0.4=3.86601…=0.3(3.86601…+29.38731…−0.4)
29.38731…−0.4=0.25866…=0.3(0.25866…+3.86601…)
数を足す:3.86601…+0.25866…=4.12468…=0.3⋅4.12468…
数を乗じる:0.3⋅4.12468…=1.23740…=1.23740…
1.23740…=1.23740…
真
解答はu=0.03402…,u=29.38731…
u=0.03402…,u=29.38731…
再び u=emに置き換えて以下を解く: m
解く em=0.03402…:m=ln(0.03402…)
em=0.03402…
指数の規則を適用する
em=0.03402…
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(em)=ln(0.03402…)
対数の規則を適用する: ln(ea)=aln(em)=mm=ln(0.03402…)
m=ln(0.03402…)
解く em=29.38731…:m=ln(29.38731…)
em=29.38731…
指数の規則を適用する
em=29.38731…
f(x)=g(x) ならば, ln(f(x))=ln(g(x))ln(em)=ln(29.38731…)
対数の規則を適用する: ln(ea)=aln(em)=mm=ln(29.38731…)
m=ln(29.38731…)
m=ln(0.03402…),m=ln(29.38731…)
解を検算する:m=ln(0.03402…)真,m=ln(29.38731…)真
2e0.4m+e−0.4m2e0.2m+e−0.2m=0.6 に当てはめて解を確認する
equationに一致しないものを削除する。
挿入 m=ln(0.03402…):真
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)2e0.2ln(0.03402…)+e−0.2ln(0.03402…)=0.6
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)2e0.2ln(0.03402…)+e−0.2ln(0.03402…)=0.6
2e0.4ln(0.03402…)+e−0.4ln(0.03402…)2e0.2ln(0.03402…)+e−0.2ln(0.03402…)
分数を割る: dcba=b⋅ca⋅d=2(e0.4ln(0.03402…)+e−0.4ln(0.03402…))(e0.2ln(0.03402…)+e−0.2ln(0.03402…))⋅2
共通因数を約分する:2=e0.4ln(0.03402…)+e−0.4ln(0.03402…)e0.2ln(0.03402…)+e−0.2ln(0.03402…)
e0.4ln(0.03402…)=0.03402…0.4
e0.4ln(0.03402…)
指数の規則を適用する: abc=(ab)c=(eln(0.03402…))0.4
対数の規則を適用する: aloga(b)=beln(0.03402…)=0.03402…=0.03402…0.4
e−0.4ln(0.03402…)=0.03402…−0.4
e−0.4ln(0.03402…)
指数の規則を適用する: abc=(ab)c=(eln(0.03402…))−0.4
対数の規則を適用する: aloga(b)=beln(0.03402…)=0.03402…=0.03402…−0.4
=0.03402…0.4+0.03402…−0.4e0.2ln(0.03402…)+e−0.2ln(0.03402…)
e0.2ln(0.03402…)=0.03402…0.2
e0.2ln(0.03402…)
指数の規則を適用する: abc=(ab)c=(eln(0.03402…))0.2
対数の規則を適用する: aloga(b)=beln(0.03402…)=0.03402…=0.03402…0.2
e−0.2ln(0.03402…)=0.03402…−0.2
e−0.2ln(0.03402…)
指数の規則を適用する: abc=(ab)c=(eln(0.03402…))−0.2
対数の規則を適用する: aloga(b)=beln(0.03402…)=0.03402…=0.03402…−0.2
=0.03402…0.4+0.03402…−0.40.03402…0.2+0.03402…−0.2
簡素化
0.03402…0.4+0.03402…−0.40.03402…0.2+0.03402…−0.2
指数の規則を適用する: a−b=ab10.03402…−0.4=0.03402…0.41=0.03402…0.4+0.03402…0.410.03402…0.2+0.03402…−0.2
指数の規則を適用する: a−b=ab10.03402…−0.2=0.03402…0.21=0.03402…0.4+0.03402…0.410.03402…0.2+0.03402…0.21
結合 0.03402…0.4+0.03402…0.41:4.12468…
0.03402…0.4+0.03402…0.41
元を分数に変換する: 0.03402…0.4=0.03402…0.40.03402…0.4⋅0.03402…0.4=0.03402…0.40.03402…0.4⋅0.03402…0.4+0.03402…0.41
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=0.03402…0.40.03402…0.4⋅0.03402…0.4+1
0.03402…0.4⋅0.03402…0.4+1=0.03402…0.8+1
0.03402…0.4⋅0.03402…0.4+1
0.03402…0.4⋅0.03402…0.4=0.03402…0.8
0.03402…0.4⋅0.03402…0.4
指数の規則を適用する: ab⋅ac=ab+c0.03402…0.4⋅0.03402…0.4=0.03402…0.4+0.4=0.03402…0.4+0.4
数を足す:0.4+0.4=0.8=0.03402…0.8
=0.03402…0.8+1
=0.03402…0.40.03402…0.8+1
0.03402…0.8=0.06690…=0.03402…0.40.06690…+1
数を足す:0.06690…+1=1.06690…=0.03402…0.41.06690…
0.03402…0.4=0.25866…=0.25866…1.06690…
数を割る:0.25866…1.06690…=4.12468…=4.12468…
=4.12468…0.03402…0.2+0.03402…0.21
結合 0.03402…0.2+0.03402…0.21:2.47480…
0.03402…0.2+0.03402…0.21
元を分数に変換する: 0.03402…0.2=0.03402…0.20.03402…0.2⋅0.03402…0.2=0.03402…0.20.03402…0.2⋅0.03402…0.2+0.03402…0.21
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=0.03402…0.20.03402…0.2⋅0.03402…0.2+1
0.03402…0.2⋅0.03402…0.2+1=0.03402…0.4+1
0.03402…0.2⋅0.03402…0.2+1
0.03402…0.2⋅0.03402…0.2=0.03402…0.4
0.03402…0.2⋅0.03402…0.2
指数の規則を適用する: ab⋅ac=ab+c0.03402…0.2⋅0.03402…0.2=0.03402…0.2+0.2=0.03402…0.2+0.2
数を足す:0.2+0.2=0.4=0.03402…0.4
=0.03402…0.4+1
=0.03402…0.20.03402…0.4+1
0.03402…0.4=0.25866…=0.03402…0.20.25866…+1
数を足す:0.25866…+1=1.25866…=0.03402…0.21.25866…
0.03402…0.2=0.50859…=0.50859…1.25866…
数を割る:0.50859…1.25866…=2.47480…=2.47480…
=4.12468…2.47480…
数を割る:4.12468…2.47480…=0.6=0.6
=0.6
0.6=0.6
真
挿入 m=ln(29.38731…):真
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)2e0.2ln(29.38731…)+e−0.2ln(29.38731…)=0.6
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)2e0.2ln(29.38731…)+e−0.2ln(29.38731…)=0.6
2e0.4ln(29.38731…)+e−0.4ln(29.38731…)2e0.2ln(29.38731…)+e−0.2ln(29.38731…)
分数を割る: dcba=b⋅ca⋅d=2(e0.4ln(29.38731…)+e−0.4ln(29.38731…))(e0.2ln(29.38731…)+e−0.2ln(29.38731…))⋅2
共通因数を約分する:2=e0.4ln(29.38731…)+e−0.4ln(29.38731…)e0.2ln(29.38731…)+e−0.2ln(29.38731…)
e0.4ln(29.38731…)=29.38731…0.4
e0.4ln(29.38731…)
指数の規則を適用する: abc=(ab)c=(eln(29.38731…))0.4
対数の規則を適用する: aloga(b)=beln(29.38731…)=29.38731…=29.38731…0.4
e−0.4ln(29.38731…)=29.38731…−0.4
e−0.4ln(29.38731…)
指数の規則を適用する: abc=(ab)c=(eln(29.38731…))−0.4
対数の規則を適用する: aloga(b)=beln(29.38731…)=29.38731…=29.38731…−0.4
=29.38731…0.4+29.38731…−0.4e0.2ln(29.38731…)+e−0.2ln(29.38731…)
e0.2ln(29.38731…)=29.38731…0.2
e0.2ln(29.38731…)
指数の規則を適用する: abc=(ab)c=(eln(29.38731…))0.2
対数の規則を適用する: aloga(b)=beln(29.38731…)=29.38731…=29.38731…0.2
e−0.2ln(29.38731…)=29.38731…−0.2
e−0.2ln(29.38731…)
指数の規則を適用する: abc=(ab)c=(eln(29.38731…))−0.2
対数の規則を適用する: aloga(b)=beln(29.38731…)=29.38731…=29.38731…−0.2
=29.38731…0.4+29.38731…−0.429.38731…0.2+29.38731…−0.2
簡素化
29.38731…0.4+29.38731…−0.429.38731…0.2+29.38731…−0.2
指数の規則を適用する: a−b=ab129.38731…−0.4=29.38731…0.41=29.38731…0.4+29.38731…0.4129.38731…0.2+29.38731…−0.2
指数の規則を適用する: a−b=ab129.38731…−0.2=29.38731…0.21=29.38731…0.4+29.38731…0.4129.38731…0.2+29.38731…0.21
結合 29.38731…0.4+29.38731…0.41:4.12468…
29.38731…0.4+29.38731…0.41
元を分数に変換する: 29.38731…0.4=29.38731…0.429.38731…0.4⋅29.38731…0.4=29.38731…0.429.38731…0.4⋅29.38731…0.4+29.38731…0.41
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=29.38731…0.429.38731…0.4⋅29.38731…0.4+1
29.38731…0.4⋅29.38731…0.4+1=29.38731…0.8+1
29.38731…0.4⋅29.38731…0.4+1
29.38731…0.4⋅29.38731…0.4=29.38731…0.8
29.38731…0.4⋅29.38731…0.4
指数の規則を適用する: ab⋅ac=ab+c29.38731…0.4⋅29.38731…0.4=29.38731…0.4+0.4=29.38731…0.4+0.4
数を足す:0.4+0.4=0.8=29.38731…0.8
=29.38731…0.8+1
=29.38731…0.429.38731…0.8+1
29.38731…0.8=14.94610…=29.38731…0.414.94610…+1
数を足す:14.94610…+1=15.94610…=29.38731…0.415.94610…
29.38731…0.4=3.86601…=3.86601…15.94610…
数を割る:3.86601…15.94610…=4.12468…=4.12468…
=4.12468…29.38731…0.2+29.38731…0.21
結合 29.38731…0.2+29.38731…0.21:2.47480…
29.38731…0.2+29.38731…0.21
元を分数に変換する: 29.38731…0.2=29.38731…0.229.38731…0.2⋅29.38731…0.2=29.38731…0.229.38731…0.2⋅29.38731…0.2+29.38731…0.21
分母が等しいので, 分数を組み合わせる: ca±cb=ca±b=29.38731…0.229.38731…0.2⋅29.38731…0.2+1
29.38731…0.2⋅29.38731…0.2+1=29.38731…0.4+1
29.38731…0.2⋅29.38731…0.2+1
29.38731…0.2⋅29.38731…0.2=29.38731…0.4
29.38731…0.2⋅29.38731…0.2
指数の規則を適用する: ab⋅ac=ab+c29.38731…0.2⋅29.38731…0.2=29.38731…0.2+0.2=29.38731…0.2+0.2
数を足す:0.2+0.2=0.4=29.38731…0.4
=29.38731…0.4+1
=29.38731…0.229.38731…0.4+1
29.38731…0.4=3.86601…=29.38731…0.23.86601…+1
数を足す:3.86601…+1=4.86601…=29.38731…0.24.86601…
29.38731…0.2=1.96621…=1.96621…4.86601…
数を割る:1.96621…4.86601…=2.47480…=2.47480…
=4.12468…2.47480…
数を割る:4.12468…2.47480…=0.6=0.6
=0.6
0.6=0.6
真
解答はm=ln(0.03402…),m=ln(29.38731…)
m=ln(0.03402…),m=ln(29.38731…)